notes in a shoebox

Quantum Forest

Category: linear models Page 1 of 4

Analyzing a simple experiment with heterogeneous variances using asreml, MCMCglmm and SAS

I was working with a small experiment which includes families from two Eucalyptus species and thought it would be nice to code a first analysis using alternative approaches. The experiment is a randomized complete block design, with species as fixed effect and family and block as a random effects, while the response variable is growth strain (in \( \mu \epsilon\)).

When looking at the trees one can see that the residual variances will be very different. In addition, the trees were growing in plastic bags laid out in rows (the blocks) and columns. Given that trees were growing in bags siting on flat terrain, most likely the row effects are zero.

More sense of random effects

I can’t exactly remember how I arrived to Making sense of random effects, a good post in the Distributed Ecology blog (go over there and read it). Incidentally, my working theory is that I follow Scott Chamberlain (@recology_), who follows Karthik Ram ?(@_inundata) who mentioned Edmund Hart’s (@DistribEcology) post. I liked the discussion, but I thought one could add to the explanation to make it a bit clearer.

The idea is that there are 9 individuals, assessed five times each—once under each of five different levels for a treatment—so we need to include individual as a random effect; after all, it is our experimental unit. The code to generate the data, plot it and fit the model is available in the post, but I redid data generation to make it a bit more R-ish and, dare I say, a tad more elegant:

Overlay of design matrices in genetic analysis

I’ve ignored my quantitative geneticist side of things for a while (at least in this blog) so this time I’ll cover some code I was exchanging with a couple of colleagues who work for other organizations.

It is common to use diallel mating designs in plant and tree breeding, where a small number of parents acts as both males and females. For example, with 5 parents we can have 25 crosses, including reciprocals and selfing (crossing an individual with itself). Decades ago this mating design was tricky to fit and, considering an experimental layout with randomized complete blocks, one would have something like y = mu + blocks + dads + mums + cross + error. In this model dads and mums were estimating a fraction of the additive genetic variance. With the advent of animal model BLUP, was possible to fit something like y = mu + blocks + individual (using a pedigree) + cross + error. Another less computationally demanding alternative (at least with unrelated parents) is to fit a parental model, overlaying the design matrices for parents with something like this y = mu + blocks + (dad + mum) + cross + error.

INLA: Bayes goes to Norway

INLA is not the Norwegian answer to ABBA; that would probably be a-ha. INLA is the answer to ‘Why do I have enough time to cook a three-course meal while running MCMC analyses?”.

Integrated Nested Laplace Approximations (INLA) is based on direct numerical integration (rather than simulation as in MCMC) which, according to people ‘in the know’, allows:

  • the estimation of marginal posteriors for all parameters,
  • marginal posteriors for each random effect and
  • estimation of the posterior for linear combinations of random effects.

Split-plot 2: let’s throw in some spatial effects

Disappeared for a while collecting frequent flyer points. In the process I ‘discovered’ that I live in the middle of nowhere, as it took me 36 hours to reach my conference destination (Estoril, Portugal) through Christchurch, Sydney, Bangkok, Dubai, Madrid and Lisbon.

Where was I? Showing how split-plots look like under the bonnet (hood for you US readers). Yates presented a nice diagram of his oats data set in the paper, so we have the spatial location of each data point which permits us playing with within-trial spatial trends.

Page 1 of 4

Powered by WordPress & Theme by Anders Norén