notes in a shoebox

Quantum Forest

Category: rblogs Page 2 of 21

Calculating parliament seats allocation and quotients

I was having a conversation about dropping the minimum threshold (currently 5% of the vote) for political parties to get representation in Parliament. The obvious question is how would seat allocation change, which of course involved a calculation. There is a calculator in the Electoral Commission website, but trying to understand how things work (and therefore coding) is my thing, and the Electoral Commission has a handy explanation of the Sainte-Laguë allocation formula used in New Zealand. So I had to write my own seat allocation function:

New Zealand Electoral Commission results website. It held really well in election night.

Collecting results of the New Zealand General Elections

I was reading an article about the results of our latest elections where I was having a look at the spatial pattern for votes in my city.

I was wondering how would I go over obtaining the data for something like that and went to the Electoral Commission, which has this neat page with links to CSV files with results at the voting place level. The CSV files have results for each of the candidates in the first few rows (which I didn’t care about) and at the party level later in the file.

Where are New Zealand’s bellwether electorates?

I was reading a piece by Graeme Edgeler who, near the end, asked “Where are New Zealand’s bellwether electorates?”. I didn’t know where the data came from or how was the “index of disproportionality for each electorate” calculated, but I saw it mostly as an opportunity to whip up some quick code to practice the use of R and look at other packages that play well with the tidyverse.

The task can be described as: fetch Wikipedia page with results of the 2014 parliamentary election, extract the table with results by electorate, calculate some form of deviation from the national results, get the top X electorates with lowest deviation from national results.

Functions with multiple results in tidyverse

I have continued playing with the tidyverse for different parts of a couple of projects.

Often I need to apply a function by groups of observations; sometimes, that function returns more than a single number. It could be something like for each group fit a distribution and return the distribution parameters. Or, simpler for the purposes of this exploration, calculate and return a bunch of numbers.

Door in Valparaíso.

Turtles all the way down

One of the main uses for R is for exploration and learning. Let’s say that I wanted to learn simple linear regression (the bread and butter of statistics) and see how the formulas work. I could simulate a simple example and fit the regression with R:

Page 2 of 21

Powered by WordPress & Theme by Anders Norén